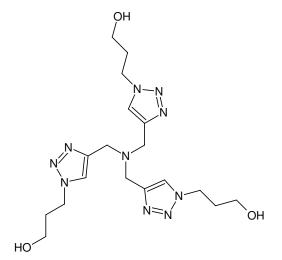

DATA SHEET



THPTA

Tris((1-hydroxy-propyl-1H-1,2,3-triazol-4-yl)methyl)amine

Cat. No.	Amount
CLK-1010-25	25 mg
CLK-1010-100	100 mg
CLK-1010-1G	1 g

Structural formula of THPTA

For general laboratory use.

Shipping: shipped at ambient temperature

Storage Conditions: store at 4 °C

Shelf Life: 12 months after date of delivery

Molecular Formula: C₁₈H₃₀N₁₀O₃ Molecular Weight: 434.50 g/mol

Exact Mass: 434.25 g/mol

CAS#: 760952-88-3 **Purity:** ≥ 95 % (HPLC)

Form: solid

Color: off-white to grey

Solubility: water, DMSO, DMF, MeOH

Description:

THPTA is a water-soluble, very effective ligand for Cu(I)-catalyzed Alkyne-Azide click chemistry reactions (CuAAC). It serves a dual purpose: 1) Accelaration of the CuAAC reaction by maintaining the Cu(I) oxidation state of copper sources and 2) Protection of biomolecules from oxidative damage during the labeling reaction^[1,2].

THPTA is a superior alternative to water-insoluble TBTA.

A stock solution can be prepared in ddH_2O and subsequently be stored at -20°C. Avoid freeze-thaw cycles.

Presolski *et al.*^[1] and Hong *et al.*^[2] provide a general protocol for CuAAC reactions that may be used as a starting point for the set up and optimization of individual assays.

Related Products:

Copper (II)-Sulphate (CuSO₄), #CLK-MI004 Sodium Ascorbate (Na-Ascorbate), #CLK-MI005 THPTA, #CLK-1010 BTTAA, #CLK-067

Selected References:

[1] Presolski et al. (2011) Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Current Protocols in Chemical Biology 3:153.
[2] Hong et al. (2011) Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 48:9879.