
DATA SHEET

■ 5-Formyl-dC

fdC, 5-Formyl-2'-deoxycytidine

Cat. No.	Amount
N-1069-5	5 mg

Structural formula of 5-Formyl-dC

For general laboratory use.

Shipping: shipped at ambient temperature

Storage Conditions: store at -20 °C

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 24 months after date of delivery

Molecular Formula: C₁₀ H₁₃ N₃O₅ Molecular Weight: 255.23 g/mol

Exact Mass: 255.09 g/mol

CAS#: 137017-45-9 **Purity:** ≥ 95 % (HPLC)

Form: solid

Color: white to off-white

Spectroscopic Properties: λ_{max} 283 nm, ϵ 11.0 L mmol⁻¹ cm⁻¹ (Tris-HCl

pH 7.5)

Applications:

Epigenetic research $^{[1]}$

Use in epigenetic therapy^[2]

Metabolism of dC substituted at position $5^{[3,4]}$

Selected References:

[1] Schroeder (2014) Synthesis of a DNA promoter segment containing all four epigenetic nucleosides: 5-Methyl-, 5-hydroxymethyl-, 5-formyl-, and 5-carboxy-2'-deoxycytidine. *Angew. Chem. Int. Ed.* **53**:315.

[2] Zauri *et al.* (2015) CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. *Nature* **524**:114.

[3] Schiesser *et al.* (2013) Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. *J. Am. Chem. Soc.* **135** (39):14593.

[4] Madugundu et al. (2014) Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. *Nucleic Acids Res.* **42 (11)**:7450.