DATA SHEET

8-Bromo-GTP

(8Br-GTP)

8-Bromo-guanosine-5'-triphosphate, Sodium salt

Cat. No.	Amount
NU-118S	50 μl (10 mM)
NU-118L	5 x 50 μl (10 mM)

Structural formula of 8-Bromo-GTP

For general laboratory use.

Shipping: shipped on gel packs **Storage Conditions:** store at -20 °C

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery **Molecular Formula:** C₁₀H₁₅N₅O₁₄P₃Br (free acid) **Molecular Weight:** 602.08 g/mol (free acid)

CAS#: 23197-98-0 **Purity:** ≥ 95 % (HPLC)

Form: solution in water

Color: colorless to slightly yellow **Concentration:** 10 mM - 11 mM

Exact Mass: 600.90 g/mol (free acid)

pH: 7.5 ±0.5

Spectroscopic Properties: λ_{max} 259 nm, ϵ 14.0 L mmol⁻¹ cm⁻¹ (Tris-HCl

pH 7.5)

Applications:

Inhibition of RNA triphosphatases^[1]

Inhibition of GTP-hydrolases^[2]

Conformational studies on syn-anti dynamics of GTP^[3]

Specific Ligands:

Yeast RNA triphosphates^[1]

Cytoskeletal protein FtsZ and tubulin^[2, 4]

Selected References:

[1] Issur et al. (2009) Nucleotide analogs and molecular modeling studies reveal key interactions involved in substrate recognition by the yeast RNA triphosphatase. *Nucleic Acid Res.* **37**:3714.

[2] Läppchen *et al.* (2005) GTP Analogue Inhibits Polymerization and GTPase Activity of the Bacterial Protein FtsZ without Affecting Its Eukaryotic Homologue Tubulin. *Biochemistry* **44 (21)**:7879.

[3] Hritz and Oostenbrink (2008) Hamiltonian replica exchange molecular dynamics using soft-core interactions. *J. Chemical Phys.* **128**:144121/1.

[4] Laeppchen *et al.* (2008) Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites. *Chemistry and Biology* **15**:189.

Gilles Labesse et al. (2011) Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation. *Nucleic Acids Res.* **39 (8)**:3458.